The Role of Protein Interactions in Mediating Essentiality and Synthetic Lethality
نویسندگان
چکیده
Genes are characterized as essential if their knockout is associated with a lethal phenotype, and these "essential genes" play a central role in biological function. In addition, some genes are only essential when deleted in pairs, a phenomenon known as synthetic lethality. Here we consider genes displaying synthetic lethality as "essential pairs" of genes, and analyze the properties of yeast essential genes and synthetic lethal pairs together. As gene duplication initially produces an identical pair or sets of genes, it is often invoked as an explanation for synthetic lethality. However, we find that duplication explains only a minority of cases of synthetic lethality. Similarly, disruption of metabolic pathways leads to relatively few examples of synthetic lethality. By contrast, the vast majority of synthetic lethal gene pairs code for proteins with related functions that share interaction partners. We also find that essential genes and synthetic lethal pairs cluster in the protein-protein interaction network. These results suggest that synthetic lethality is strongly dependent on the formation of protein-protein interactions. Compensation by duplicates does not usually occur mainly because the genes involved are recent duplicates, but is more commonly due to functional similarity that permits preservation of essential protein complexes. This unified view, combining genes that are individually essential with those that form essential pairs, suggests that essentiality is a feature of physical interactions between proteins protein-protein interactions, rather than being inherent in gene and protein products themselves.
منابع مشابه
Discovering Domains Mediating Protein Interactions
Background: Protein-protein interactions do not provide any direct information regarding the domains within the proteins that mediate the interactions. The majority of proteins are multi domain proteins and the interaction between them is often defined by the pairs of their domains. Most of the former studies focus only on interacting domain pairs. However they do not consider the in...
متن کاملTowards a compendium of essential genes – From model organisms to synthetic lethality in cancer cells
Essential genes are defined by their requirement to sustain life in cells or whole organisms. The systematic identification of essential gene sets not only allows insights into the fundamental building blocks of life, but may also provide novel therapeutic targets in oncology. The discovery of essential genes has been tightly linked to the development and deployment of various screening technol...
متن کاملPurification of Saccharomyces cerevisiae eIF4E/eIF4G/Pab1p Complex with Capped mRNA
Protein synthesis is one of the most complex cellular processes, involving numerous translation components that interact in multiple sequential steps. The most complex stage in protein synthesis is the initiation process. The basal set of factors required for translation initiation has been determined, and biochemical, genetic, and structural studies are now beginning to reveal details of their...
متن کاملWhy Do Hubs in the Yeast Protein Interaction Network Tend To Be Essential: Reexamining the Connection between the Network Topology and Essentiality
The centrality-lethality rule, which notes that high-degree nodes in a protein interaction network tend to correspond to proteins that are essential, suggests that the topological prominence of a protein in a protein interaction network may be a good predictor of its biological importance. Even though the correlation between degree and essentiality was confirmed by many independent studies, the...
متن کاملMoving ahead on harnessing synthetic lethality to fight cancer
We have recently developed a data-mining pipeline that comprehensively identifies cancer unique susceptibilities, following the concept of Synthetic Lethality (SL). The approach enables, for the first time, to identify and harness genome-scale SL-networks to accurately predict gene essentiality, drug response, and clinical prognosis in cancer.
متن کامل